Iron ore (fines)

From Cargo Handbook - the world's largest cargo transport guidelines website
Revision as of 10:58, 30 July 2013 by DeBeer (talk | contribs)
Infobox on Iron ore (fines)
Example of Iron ore (fines)
Iron ore fines.gif
Facts
Origin See text
Stowage factor (in m3/t)
  • 0,7/0,8 m3/t (bulk)
Humidity / moisture See text
Ventilation No special requirements
Risk factors See text

Iron ore (fines)

Description

Iron Ore (fines)

Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in colour from dark grey, bright yellow, deep purple, to rusty red. The iron itself is usually found in the form of magnetite (Fe3O4), hematite (Fe2O3), goethite (FeO(OH)), limonite (FeO(OH).n(H2O)) or siderite (FeCO3).

Ores carrying very high quantities of hematite or magnetite (greater than ~60% iron) are known as "natural ore" or "direct shipping ore", meaning they can be fed directly into iron-making blast furnaces. Most reserves of such ore have now been depleted. Iron ore is the raw material used to make Pig Iron, which is one of the main raw materials to make steel. 98% of the mined iron ore is used to make steel. Indeed, it has been argued that iron ore is "more integral to the global economy than any other commodity, except perhaps oil".

Iron ore is mined in about 50 countries. The seven largest of these producing countries account for about three-quarters of total world production. Australia and Brazil together dominate the world's iron ore exports, each having about one-third of total exports.
Iron (Fe) is a metallic element and composes about 5% of the Earth's crust. When pure it is a dark, silvery-gray metal. It is a very reactive element and oxidizes (rusts) very easily. The reds, oranges and yellows seen in some soils and on rocks are probably iron oxides. The inner core of the Earth is believed to be a solid iron-nickel alloy. Iron-nickel meteorites are believed to represent the earliest material formed at the beginning of the universe. Studies show that there is considerable iron in the stars and terrestrial planets: Mars, the "Red Planet," is red due to the iron oxides in its crust.

Iron is one of the three naturally magnetic elements; the others are cobalt and nickel. Iron is the most magnetic of the three. The mineral magnetite (Fe3O4) is a naturally occurring metallic mineral that is occasionally found in sufficient quantities to be an ore of iron.

The principle ores of iron are Hematite, (70% iron) and Magnetite, (72% iron). Taconite is a low-grade iron ore, containing up to 30% Magnetite and Hematite.

Hematite is Iron Oxide (Fe2O3). The amount of hematite needed in any deposit to make it profitable to mine must be in the tens of millions of tons. Hematite deposits are mostly sedimentary in origin, such as the banded iron formations (BIFs). BIFs consist of alternating layers of chert (a variety of the mineral quartz), hematite and magnetite. They are found throughout the world and are the most important iron ore in the world today. Their formation is not fully understood, though it is known that they formed by the chemical precipitation of iron from shallow seas about 1.8-1.6 billion years ago, during the Proterozoic Eon.

Taconite is a silica-rich iron ore that is considered to be a low-grade deposit. However, the iron-rich components of such deposits can be processed to produce a concentrate that is about 65% iron, which means that some of the most important iron ore deposits around the world were derived from taconite. Taconite is mined in the United States, Canada, and China.

Iron is essential to animal life and necessary for the health of plants. The human body is 0.006% iron, the majority of which is in the blood. Blood cells rich in iron carry oxygen from the lungs to all parts of the body. Lack of iron also lowers a person's resistance to infection.

It is estimated that worldwide there are 800 billion tons of iron ore resources, containing more than 230 billion tons of iron. It is estimated that the United States has 110 billion tons of iron ore representing 27 billion tons of iron. Among the largest iron ore producing nations are Russia, Brazil, China, Australia, India and the USA. In the United States, great deposits are found in the Lake Superior region. Worldwide, 50 countries produce iron ore, but 96% of this ore is produced by only 15 of those countries.

Iron ore is the raw material used to make Pig Iron, which is one of the main raw materials to make steel. Due to the lower cost of foreign-made steel and steel products, the steel industry in the United States has had difficult economic times in recent years as more and more steel is imported. Canada provides about half of the U.S. imports, Brazil about 30%, and lesser amounts from Venezuela and Australia. 99% of steel exported from the USA was sent to Canada.

Application

Almost all of the iron ore that is mined is used for making steel. Raw iron by itself is not as strong and hard as needed for construction and other purposes. So, the raw iron is alloyed with a variety of elements (such as tungsten, manganese, nickel, vanadium, chromium) to strengthen and harden it, making useful steel for construction, automobiles, and other forms of transportation such as trucks, trains and train tracks.

While the other uses for iron ore and iron are only a very small amount of the consumption, they provide excellent examples of the ingenuity and the multitude of uses that man can create from our natural resources.

Powdered iron: used in metallurgy products, magnets, high-frequency cores, auto parts, catalyst. Radioactive iron (iron 59): in medicine, tracer element in biochemical and metallurgical research. Iron blue: in paints, printing inks, plastics, cosmetics (eye shadow), artist colours, laundry blue, paper dyeing, fertilizer ingredient, baked enamel finishes for autos and appliances, industrial finishes. Black Iron Oxide: as pigment, in polishing compounds, metallurgy, medicine, magnetic inks, in ferrites for electronics industry.

Though there is no substitute for iron, iron ores are not the only materials from which iron and steel products are made. Very little scrap iron is recycled, but large quantities of scrap steel are recycled. Steel's overall recycling rate of more than 67% is far higher than that of any other recycled material, capturing more than 1-1/4 times as much tonnage as all other materials combined.

Some steel is produced from the recycling of scrap iron, though the total amount is considered to be insignificant now. If the economy of steel production and consumption changes, it may become more cost-effective to recycle iron than to produce new from raw ore.

Iron and steel face continual competition with lighter materials in the motor vehicle industry; from aluminium, concrete, and wood in construction uses; and from aluminium, glass, paper, and plastics for containers.

Spathic ore is used for the production of hydrogen by steam iron contact process. The ore to be used must have a spongy structure in order to present the maximum surface contact. Generally ore of light yellow colour is preferred. It should not sinter together when subjected to the high temperature of 1.000ºC.

The ore is calcined before use to make it suitable for reduction and oxidation cycles. For the production of hydrogen, the calcined ore is first reduced at 700-1.000ºC by use of water gas or producer gas. Steam is then passed over it. The ore gets oxidised and the hydrogen is liberated from the steam. The oxidised ore is then subjected to the reduction cycle by passing water gas which makes the ore suitable for reuse.

The arrangement for the process of oxidation and reduction cycle is made automatic in the plant to get the supply of commercial hydrogen which is utilised for the hydrogenation of vegetable oils. Hydrogenation effects hardening of the oils.

Micaceous iron ore is generally soft and unctuous. It is used in the manufacture of welding rods (electrodes). It is also used as a coating material in the preparation of welding rods. Bog iron ore is used as purifying and desulphurising material of producer gas and municipal gases. The ore is filled in purifying tank through which gases are passed and purified. Magnetite is used for the preparation of heavy media in coal-washing plants. It has got distinct advantage over sand as magnetite particles adhering to coal can easily be separated by the magnetic separator.